Complex Hydrides for Hydrogen Storage

George Thomas, Consultant
Sandia National Laboratories
Efficient onboard hydrogen storage is a critical enabling technology for the use of hydrogen in vehicles

• The low volumetric density of gaseous fuels requires a storage method which densifies the fuel.
 – This is particularly true for hydrogen because of its lower energy density relative to hydrocarbon fuels.
• Storage methods result in additional weight and volume above that of the fuel.

How do we achieve adequate stored energy in an efficient, safe and cost-effective system?

G. J. Thomas
One storage option is to chemically bond hydrogen in a solid material

• This storage approach should have the highest hydrogen packing density.

However, the storage media must meet certain requirements:
 – reversible hydrogen uptake/release
 – lightweight
 – low cost
 – cyclic stability
 – rapid kinetic properties
 – equilibrium properties (P,T) consistent with near ambient conditions.
Where do we start?

The online database hydpark.ca.sandia.gov lists over 2000 elements, compounds and alloys that form hydrides.
Where do we start?

Transition metals (IIIB, IVB, VB) form metallic bond hydrides

- moderate P,T properties
- equilibrium properties can be adjusted over a wide range by alloying.
- *Interstitial H: good kinetics*
- *low capacity (heavy metals, modest H/M)*

G. J. Thomas
Where do we start?

Group IA, IIA elements form ionic or covalent bond hydrides

- high energy bond: high T, low P
- high capacity (lightweight materials)

Group IA, IIA elements form ionic or covalent bond hydrides

- high energy bond: high T, low P
- high capacity (lightweight materials)
Where do we start?

Hydrogen can also form complexes with some elements

G. J. Thomas
Complex hydrides give you another “knob to twist”

• Complex hydrides consist of a $\text{H}=\text{M}$ complex with additional bonding element(s)

• hydrogen complexes include:
 – $(\text{AlH}_4)^-$ (alanates)
 – $(\text{BH}_4)^-$
 – with Group VIII elements

• features:
 – ionic, covalent, metallic bonding
 – can have lower formation energy
 – can have high H/M

• 173 complex hydrides listed on hydpark.ca.sandia.gov
Total hydrogen content of some alanates

- LiAlH$_4$
- NaAlH$_4$
- KAlH$_4$
- Be(AlH$_4$)$_2$
- Na$_2$LiAlH$_6$
- Mg(AlH$_4$)$_2$
- CuAlH$_4$
- Ca(AlH$_4$)$_2$
- Mn(AlH$_4$)$_2$
- Fe(AlH$_4$)$_2$
- AgAlH$_4$
- Ti(AlH$_4$)$_3$
- Ga(AlH$_4$)$_3$
- CsAlH$_4$
- Ti(AlH$_4$)$_4$
- In(AlH$_4$)$_3$
- Zr(AlH$_4$)$_4$
- Ce(AlH$_4$)$_3$
- Sn(AlH$_4$)$_4$

Increasing mol. weight

Weight percent hydrogen

0 2 4 6 8 10 12
Issues with complex hydrides

- Reversibility
 - role of catalyst or dopant
- Thermodynamics
 - pressure, temperature
- Kinetics
 - long-range transport of heavy species
- Cyclic stability
- Synthesis
- Compatibility/safety

only NaAlH$_4$ has been studied in detail to date this material serves as a model system to better understand other complex hydrides

G. J. Thomas
Brief history of NaAlH$_4$

- Compound first reported by Finholt & Schlesinger in 1955
- Direct synthesis developed by Ashby (1958) and Clasen (1961)
- Principal use has been as a chemical reducing agent
- There have been numerous characterization studies: (Dymova, Zakharkin, Claudy, Wiberg...)
- Reversibility demonstrated by use of Ti catalyst (Bogdanovic and Schwickardi MH96, JAC 253(1997) 1)

this development spurred renewed interest in using complex hydrides as storage materials
Na Alanate - a reversible complex hydride

• There are five labs within USDOE program during FY02 working on complex-based hydrides, focused mainly on NaAlH$_4$
 – Univ. of Hawaii Prof. C. Jensen
 – Sandia Nat. Lab. Dr. K. Gross
 – Florida Solar Energy Center Dr. D. Slattery
 – United Tech. Res. Center Dr. D. Anton
 – Savannah River Tech. Center Dr. R. Zidan

• These labs have formed a working group to coordinate their activities and share information.
Na Alanate -
a reversible complex hydride

• There are development projects outside of the US.
 – B. Bogdanovic, Max Planck Inst., Mulheim, Germany
 • GM Opel support
 – A. Zaluska, L. Zaluski
 • recently left McGill Univ. (Canada)
 • HERA (HydroQuebec, GfE, ShellHydrogen)
 – Japan funding development through WENET, AIST

• Ames Laboratory has recently published some work on Li alanate
Thermodynamic data

\[3\text{NaAlH}_4 \overset{\text{catalyst}}{\leftrightarrow} \text{Na}_3\text{AlH}_6 + 2\text{Al} + 3\text{H}_2 \overset{\text{catalyst}}{\leftrightarrow} 3\text{NaH} + \text{Al} + 3/2\text{H}_2 \]

- **NaAlH\textsubscript{4}** to **Na\textsubscript{3}AlH\textsubscript{6}**
 \[\Delta H_f = 37 \text{ kJ/mol} \]
- **Na\textsubscript{3}AlH\textsubscript{6}** to **NaH**
 \[\Delta H_f = 47 \text{ kJ/mol} \]

Bogdanovic, et al

Sandia Nat. Lab.

- melting point

G. J. Thomas
Current studies on NaAlH$_4$

- Mechanisms
 - experimental
 - modelling
- catalysts, doping
- mechanical processing
- synthesis
- engineering properties

G. J. Thomas
Understanding NaAlH$_4$ mechanisms will help in developing higher capacity hydrides.

NMR shows Ti doping enhances proton mobility.

ESR spectra characteristic of Ti$^{+3}$.

Decomposition of undoped NaAlH$_4$.

G. J. Thomas

C. Jensen, Univ. of Hawaii

K. J. Gross, SNL
Crystal structure and modeling

Neutron diffraction
Rietveld refinement

Ab initio calculations using VASP

G. J. Thomas

E. Majzoub, SNL
Catalysts/Doping

- Initially, reversibility believed due to catalytic effects. Recent evidence, however, indicates bulk doping.
- 3 factors affect hydride performance:
 1. catalyst/dopant
 - numerous compounds evaluated.
 - Ti-based most effective.
 2. method of introduction
 - mechanical mixing (dry process)
 - wet chemistry
 - precursor must react with alanate
 3. amount of catalyst/dopant
Catalyst/Doping level affects kinetics and capacity

NaAlH₄

- Initial kinetics exhibit Arrhenius behavior
- Different activation energy in doped material
- Activation energy constant for 2 mol% and greater doping
- Faster kinetics with higher doping levels

(G. Sandrock, K. J. Gross, G. Thomas, JAC 339 (2002) 299)

- Trade-off between faster kinetics and loss of capacity with increasing doping levels

G. J. Thomas
Engineering Properties

- Thermal conductivity
 - similar to IM hydrides cycling
 - stable to ~100 cycles
- Material compatibility
 - no issues with Al, SS
- Safety
 - sensitive to impact, thermal environment with air exposure.

G. J. Thomas
Volumes of 5 kg H₂ Systems

- **High pressure Tanks 5000 psi**
 - 30 cm (12 in.)
 - 25 cm (10 in.)
 - 20 cm (8 in.)

- **5 wt.% Alanate**
 - cryotank 40 cm diameter
 - 560 Wh/liter

- **Target: 1100 Wh/liter**
 - 10 cm (4 in.)
 - 15 cm (6 in.)
 - 20 cm (8 in.)

- **Reformer 2005 target**
 - 1200 Wh/liter

- **5 kg H₂ system volumes**
 - 1200 Wh/liter
 - 560 Wh/liter
 - Target: 1100 Wh/liter
5 kg H₂ system weights

System weights for 5 kg H₂

- **alanate**: 1100 Wh/kg
- **cryotank**: 1300 Wh/kg
- **compressed gas**: 2500 Wh/kg

Target: 2000 Wh/kg

G. J. Thomas
A complex hydride based on BH_4^- forms the basis for a chemical hydride storage system

- Development efforts largely financed privately.
 - Millenium Cell
 an IP company with no plans to manufacture.
 - Kogakuin Univ., Japan (Prof. S. Suda)
- Both based on borohydride chemistry.
 - each use different catalyst.
- System has 4-10 wt.% capacity
- reversibility a problem with boron-based systems

$$NaBH_4 + 2H_2O \rightarrow NaBO_2 + 4H_2 + \text{heat}$$

- 20 - 35% sol.
 Stabilized with 1-3% NaOH
- Proprietary catalyst
- Borax in NaOH

G. J. Thomas
Where do we go from here?

• What’s beyond NaAlH₄?
 – Capacity appears limited to ~5 wt.%
 – modifications or new complexes needed.

• Some improvements in weight, volume and cost can be realized by better container engineering.

Intermetallic hydrides were studied for thirty years before doped alanates provided a significant improvement in capacity.

We need to be a little faster!

G. J. Thomas