Chemical Storage Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 #### Hydrogen Fuel - Attributes - $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O (1.23 V)$ - High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g - 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η_{FC} = 57%) - Li ion cells: 130-150 Wh/kg #### **Chemical Hydrides - Definition** They are considered secondary storage methods in which the storage medium is expended – primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH₂ & LH₂ storage #### Chemical Hydrides – Definition (cont.) The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation state ### Chemical Hydrides – Definition (cont.) - Include simple ionic hydrides having hydride ion H-, which is a very strong reducing agent - Complex hydrides have the general formula M(M'H₄)_n, where n is the valance of M, and M' is a trivalent Group 13 element #### Chemical Hydrides – Definition (cont.) Reactions include chemical hydride (e.g. LiH, NaH, AlH₃, LiAlH₄, Li₃AlH₆, NaBH₄, etc.) & a proton containing reactant (e.g. H₂O, NH₃ & H₂S) #### Chemical Hydrides – Requirements - Be thermodynamically spontaneous (∆G<1) - Be kinetically tractable (fast, but not explosive) - Use available (cheap, etc.) reactants ### Chemical Hydrides – Requirements (cont.) - Produce H₂ compatible with the PEM fuel cell (no H₂S, CO or NH₃) - Can provide H₂ to the fuel cell as the H₂ is needed (load following) without complex & heavy control systems #### Chemical Hydrides – H₂ Generation - Hydrolysis - reaction with H₂O, NH₃, H₂S,etc. - Pyrolysis - decomposition by heat | Reaction | wt%H ₂ | Capacity, | |--|-------------------|-----------| | | Yiel d | kWh/kg | | LiH + H ₂ O _{->} LiOH + H ₂ | 7.7 | 1.46 | | NaH + H ₂ O _{->} NaOH + H ₂ | 4.8 | 0.91 | | $CaH_2 + 2 H_2O_{->} Ca(OH)_2 + 2 H_2$ | 5.2 | 0.99 | | LIAH ₄ + 4 H ₂ O _{->} LIOH + AI(OH) ₃ + 4 H ₂ | 7.3 | 1.38 | | LiBH ₄ + 4 H ₂ O _{->} LiOH + H ₃ BO ₃ + 4 H ₂ | 8.6 | 1.63 | | $NaAlH_4 + 4 H_2O_{->} NaOH+ Al(OH)_3 + 4 H_2$ | 6.4 | 1.21 | | NaBH ₄ + 4 H ₂ O -> NaOH + H ₃ BO ₃ + 4 H ₂ | 7.3 | 1.38 | - Kinetics are inhibited by high pH & insolubility of reaction products - use of catalyst: Ru supported on ion exchange resin (Millennium Cell) - use of steam (Matthews, et al.) - hydride slurry (Thermo Power) - Reactions are spontaneous & highly exothermic - use of ligand-stabilized complexes (Matthews, et al., IJHE 23(12) 1998) - Reactions are irreversible & byproducts needs recycling or disposal - H₂ can be produced from stoichiometric reaction but, in practice, excess water is almost always required - Most are moderately to very unstable when stored in humid air - More difficult issue is the control of the reaction & choosing the lightest possible system - To be able to compete with primary Li batteries on cost, than the reactants must be cheap and the generation must be simple The inorganic hydrides that are used industrially (e.g. LiAlH₄) & common reactants (i.e. H₂O or NH₃) have the best chance to meet cost goals - LiAlH₄+2NH₃ \rightarrow LiNH₂+AlN+4H₂ (\$50/lb)+(\$1/lb) - gives a cost of reactants of about \$0.024/Wh & energy density of about 2514 Wh/kg One application Combines primary hydrides with NH₄Cl or similar halide salt, stabilized with a polymer binder (e.g. PTFE): $NH_4F + LiBH_4 = LiF + BN + 4 H_2$ H₂ storage density of ~ 13.6 wt % - NH₄X + MH formulations render compound storable, and insensitive to air & moisture - But these pyrolytic reactions are highly exothermic & can NOT be stopped once initiated - NH₄BH₄ = BN + 4 H₂ (24.5 wt %) Unstable above -20°C, unsuitable - NH₃BH₃ = BN + 3 H₂ (20 wt %) Requires heating, decomposition at stages from ~130-450°C - Artz & Grant (US 4,673,528) - $Mg(BH_4)_2.2NH_3/LiNO_3/PTFE:$ 85/7½/7½ wt % - gives 12.84 wt% of 99.8% pure H₂ - impurities include CO, NH₃ & CH₄ - once reaction starts, can NOT be stopped - Artz & Grant (US 4,468,263) - NH₃BH₃/N₂H₄.2BH₃/(NH₄)₂B₁₀H₁₀/ NH₄NO₃: 50/30/9.8/10.2 wt % - gives 16.52 wt% of >94% pure H₂ - impurities include borazine B₃N₃H₆ - reaction unstoppable once started - DDT occurs in some cases #### **Chemical Hydrides – Cost/Performance Comparison** | Hydrogen storer | Mass, kg | V <mark>olume, I</mark> | Cost, US\$ | Reference | |---------------------------------|----------|-------------------------|------------|-----------| | LiH | 1.7 | 3.7 | 109 | 1 | | CaH ₂ | 4.5 | 4.0 | 104 | 1 | | NaBH₄ (35 wt% aqueous) | 6.21 | 6.21 | 102 | 1 & 2 | | H ₃ BNH ₃ | 2.38 | 3.21 | 390-525 | - | - 1. V.C.Y. Kong, et al., Int. J. Hydrogen Energy, 24, 665-75, 1999 - S.C. Amendola, et al., Proceedings of the Power Sources Conference, 39th, 176-79, 2000 #### Conclusions - Successful implementation of chemical hydrides for vehicular FC applications requires: - Substantial reduction in their production costs - Development of new synthesis routes for their preparation