

Chemical Storage Overview Ali T-Raissi, FSEC

Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois

August 14-15, 2002

Hydrogen Fuel - Attributes

- $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O (1.23 V)$
- High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g
- 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η_{FC} = 57%)
- Li ion cells: 130-150 Wh/kg

Chemical Hydrides - Definition

 They are considered secondary storage methods in which the storage medium is expended – primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH₂ & LH₂ storage

Chemical Hydrides – Definition (cont.)

 The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation state

Chemical Hydrides – Definition (cont.)

- Include simple ionic hydrides having hydride ion H-, which is a very strong reducing agent
- Complex hydrides have the general formula M(M'H₄)_n, where n is the valance of M, and M' is a trivalent Group 13 element

Chemical Hydrides – Definition (cont.)

 Reactions include chemical hydride (e.g. LiH, NaH, AlH₃, LiAlH₄, Li₃AlH₆, NaBH₄, etc.) & a proton containing reactant (e.g. H₂O, NH₃ & H₂S)

Chemical Hydrides – Requirements

- Be thermodynamically spontaneous (∆G<1)
- Be kinetically tractable (fast, but not explosive)
- Use available (cheap, etc.) reactants

Chemical Hydrides – Requirements (cont.)

- Produce H₂ compatible with the PEM fuel cell (no H₂S, CO or NH₃)
- Can provide H₂ to the fuel cell as the H₂ is needed (load following) without complex & heavy control systems

Chemical Hydrides – H₂ Generation

- Hydrolysis
 - reaction with H₂O, NH₃, H₂S,etc.
- Pyrolysis
 - decomposition by heat

Reaction	wt%H ₂	Capacity,
	Yiel d	kWh/kg
LiH + H ₂ O _{->} LiOH + H ₂	7.7	1.46
NaH + H ₂ O _{->} NaOH + H ₂	4.8	0.91
$CaH_2 + 2 H_2O_{->} Ca(OH)_2 + 2 H_2$	5.2	0.99
LIAH ₄ + 4 H ₂ O _{->} LIOH + AI(OH) ₃ + 4 H ₂	7.3	1.38
LiBH ₄ + 4 H ₂ O _{->} LiOH + H ₃ BO ₃ + 4 H ₂	8.6	1.63
$NaAlH_4 + 4 H_2O_{->} NaOH+ Al(OH)_3 + 4 H_2$	6.4	1.21
NaBH ₄ + 4 H ₂ O -> NaOH + H ₃ BO ₃ + 4 H ₂	7.3	1.38

- Kinetics are inhibited by high pH & insolubility of reaction products
 - use of catalyst: Ru supported on ion exchange resin (Millennium Cell)
 - use of steam (Matthews, et al.)
 - hydride slurry (Thermo Power)

- Reactions are spontaneous & highly exothermic
 - use of ligand-stabilized complexes (Matthews, et al., IJHE 23(12) 1998)
- Reactions are irreversible & byproducts needs recycling or disposal

- H₂ can be produced from stoichiometric reaction but, in practice, excess water is almost always required
- Most are moderately to very unstable when stored in humid air

- More difficult issue is the control of the reaction & choosing the lightest possible system
- To be able to compete with primary Li batteries on cost, than the reactants must be cheap and the generation must be simple

 The inorganic hydrides that are used industrially (e.g. LiAlH₄) & common reactants (i.e. H₂O or NH₃) have the best chance to meet cost goals

- LiAlH₄+2NH₃ \rightarrow LiNH₂+AlN+4H₂ (\$50/lb)+(\$1/lb)
- gives a cost of reactants of about \$0.024/Wh & energy density of about 2514 Wh/kg

 One application Combines primary hydrides with NH₄Cl or similar halide salt, stabilized with a polymer binder (e.g. PTFE):

 $NH_4F + LiBH_4 = LiF + BN + 4 H_2$

H₂ storage density of ~ 13.6 wt %

- NH₄X + MH formulations render compound storable, and insensitive to air & moisture
- But these pyrolytic reactions are highly exothermic & can NOT be stopped once initiated

- NH₄BH₄ = BN + 4 H₂ (24.5 wt %)
 Unstable above -20°C, unsuitable
- NH₃BH₃ = BN + 3 H₂ (20 wt %)
 Requires heating, decomposition at stages from ~130-450°C

- Artz & Grant (US 4,673,528)
 - $Mg(BH_4)_2.2NH_3/LiNO_3/PTFE:$ 85/7½/7½ wt %
 - gives 12.84 wt% of 99.8% pure H₂
 - impurities include CO, NH₃ & CH₄
 - once reaction starts, can NOT be stopped

- Artz & Grant (US 4,468,263)
 - NH₃BH₃/N₂H₄.2BH₃/(NH₄)₂B₁₀H₁₀/ NH₄NO₃: 50/30/9.8/10.2 wt %
 - gives 16.52 wt% of >94% pure H₂
 - impurities include borazine B₃N₃H₆
 - reaction unstoppable once started
 - DDT occurs in some cases

Chemical Hydrides – Cost/Performance Comparison

Hydrogen storer	Mass, kg	V <mark>olume, I</mark>	Cost, US\$	Reference
LiH	1.7	3.7	109	1
CaH ₂	4.5	4.0	104	1
NaBH₄ (35 wt% aqueous)	6.21	6.21	102	1 & 2
H ₃ BNH ₃	2.38	3.21	390-525	-

- 1. V.C.Y. Kong, et al., Int. J. Hydrogen Energy, 24, 665-75, 1999
- S.C. Amendola, et al., Proceedings of the Power Sources Conference, 39th, 176-79, 2000

Conclusions

- Successful implementation of chemical hydrides for vehicular FC applications requires:
 - Substantial reduction in their production costs
 - Development of new synthesis routes for their preparation